

Instruction Manual for RCA COSMAC Microterminal

Instruction Manual for RCA COSMAC Microterminal

RCA|Solid State Division|Somerville, NJ 08876

Copyright 1977 by RCA Corporation (All rights reserved under Pan-American Copyright Convention)

Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of RCA.

Trademark(s) Registered (B)
Marca(s) Registrada(s)

Foreword

The RCA COSMAC Microterminal CDP18S021 is a portable data terminal designed to operate with the CDP18S020 Evaluation Kit or with comparable user-designed RCA 1800 series microprocessor systems. The Microterminal is a low-power, low-cost, small-size, non-hard-copy alternative to conventional teletypewriter or similar terminals. It is particularly effective where portability and/or minimum cost are major system parameters.

This Manual is designed as a guide for users of the Microterminal. It includes a description of the hardware, the software programs available in a supplied ROM, and the operating modes of the device. Installation instructions are included for integrating the Microterminal into the Evaluation Kit.

For additional information on the RCA COSMAC Microprocessor CDP1802 and the Evaluation Kit CDP18S020, the user is referred to the following manuals:

MPM-201A User Manual for the RCA CDP1802 COSMAC Microprocessor

MPM-203 Evaluation Kit Manual for the RCA CDP1802

COSMAC Microprocessor

Table of Contents

P	age
Foreword	3
System Hardware	7
Keyboard/Display Unit	7
Keyboard Operation	8
Display Operation	8 9 9
Utility ROM	9
System Software	13
Microterminal Operating Modes	13
Memory Read	13
Memory Write	14
Starting a User Program	15
CPU Register Readout	15
Single-Step Operation	15
Microterminal Utility Subroutines (UT5)	16
KEYUT	16
ENTRY	16
COUNT	18
Readout Subroutines - REGDIS and LEDD	18
Examples of Use of UT5 Subroutines	18
Appendix A - Instructions for Installing the CDP18S021 Microterminal in the CDP18S020 Evaluation Kit	21
Appendix B - Utility Program UT5 Listing	24

Fig. 1 - RCA COSMAC Microterminal CDP18S021.

System Hardware

The RCA COSMAC Microterminal CDP18S021 consists of keyboard and display unit, its connecting cable and mating connector, and a ROM containing a Utility Program (UT5) to run the terminal and various subroutines that user programs can access. Although initially designed for use with the COSMAC Evaluation Kit CDP18S020, the Microterminal can also be used with comparable user-designed hardware support systems. The following descriptive material provides the information necessary to interface the Microterminal to the Evaluation Kit or to an appropriate system.

Keyboard/Display Unit

A photograph of the Microterminal is given in Fig. 1 and a block diagram of the keyboard/display unit in Fig. 2. The Microterminal system is divided into three functional sections: control, display, and keyboard.

The <u>control section</u> contains the requisite hardware for controlling the operation of the microprocessor system. The function keys are as follows:

R

Reset: resets the logic of the Microterminal and microprocessor system. Puts the CDP1802 in Reset

RU

Rum Utility: starts execution of the Utility Program (UT5), which is at location 8000.

RP	Run Program: starts program execution at location
	0000 with RO as program counter.
CONT/STEP	Slide switch to enable continuous or single-step
	operation of the microprocessor system.
\leftrightarrow	Entry Mode Control: this key toggles between the
	address entry and data entry modes.
INC	Increment Address: each depression increments
	the address shown in the display. In the data
	entry mode, it also causes the data byte shown
	to be written to the address shown before
	incrementing the address.
\$P	Start Addressed Program: starts program execution
v	at the location shown in the address display.
CA	Clear Address: clears (resets) the address
	display to 0000.
	TO I COMPLETED IN THE CONTRACTOR

The R, RU, RP, and CONT/STEP controls perform the same functions as the corresponding switches on the Evaluation Kit. For users designing their own systems, the execution of these control functions can be seen in the Evaluation Kit Manual for the RCA CDP1802 COSMAC Microprocessor, MPM-203.

The <u>keyboard section</u> of the Microterminal contains 16 digit keys (0 through F) that are used to enter hexadecimal numbers into the address or data field. The destination of entered data is controlled by the ↔ mode toggling switch. The hexadecimal digit keys and some of the control function keys are encoded and sent to the microprocessor system on the bidirectional data bus, as shown in the logic diagram of Fig. 3. Logic is provided for scanning and signalling keyboard activity to the microprocessor. The actual scanning, debounce, and decoding algorithms are performed by software routines in the Utility Program.

The display section consists of an eight-digit seven-segment LED display, display drivers, and refresh logic. In either the data entry or address entry mode of operation, the display shows a four-digit address field on the left side and a two-digit data field on the right separated by blank positions. In other subroutine-oriented display modes, all eight-digits are available in two groups of four separated by blank positions. This subject is discussed further in the next section, System Software. Illuminated decimal points in either the address or data field indicate the current operating mode. Software routines in the Utility Program perform digit selection, multiplexing, and hexadecimal-to-seven-segment code conversion.

Keyboard Operation

Depression of any key (except R, RU, or RP) produces a signal on EF3 of the CDP1802 as shown in Fig. 3. This signal starts the Utility Program which then issues an input instruction 6C to bring in the encoded data. This data is compared with a code table to discern which key was depressed. As shown in Fig. 3, the keys are in three groups.

)}

Coding is produced by Exclusive-Or gates which invert certain bits depending on key group. To eliminate key "bounce", a debouncing routine repeatedly scans the input until consecutive valid codes are found. Subroutines to scan, decode, and debounce keys are given in the UT5 listing, Appendix B.

Display Operation

Each LED is composed of seven-segments and a decimal point. The eight LED's are connected to eight-segment drivers which in turn, are driven by an output port (U6). Output instruction 63 is used to latch segment data into this port. A second output port (U5) is used to turn on the selected digit with output instruction 64 used to latch the digit selection information. Multiplexing and segment control are provided by subroutines in UT5.

Digit and segment codes are shown in Fig. 4. To display a character, the respective codes for the segments of the character are fetched and the result sent to output port #3. The appropriate digit code is then sent to output port #4 to complete the operation.

A separate 5-volt supply $V_{\rm LED}$ is provided for the LED's and their drivers. The rest of the logic is supplied from $V_{\rm CC}$, which may range from 5 to 12 volts. It should, of course, be the same voltage and from the same supply as the interfacing signals to the microprocessor system.

Utility ROM

The Utility ROM contains the software routines required to interface the Microterminal to a microprocessor system. These programs are collectively known as UT5. The ROM is a mask-programmed CDP1832D device, branded CDPR522, with a 512 x 8 configuration. UT5 is programmed to occupy memory locations 8000 through 81FF. It requires 32 bytes of RAM starting at location 8C00 for a stack area. For user-designed microprocessor systems, a CDP1824D RAM at location 8C00 will fulfill UT5 stack requirements. Standard COSMAC hardware support systems already have such a RAM.

There are two main sections in UT5: the KEYUT routine which handles the terminal interface, and user-oriented subroutines. These functions are described in the next section, System Software.

Parts List:

Fig. 3a - Schematic and logic diagram for Microterminal CDP18S021. (Cont'd. on Page 11.)

92CL - 28539

Parts List (Cont'd.)

U9 = Resistor module,

470 A, Beckman Inst.

U10 = CD4049BE

U11 = CD4049BE

J1 = Header 3428-1002

3M Company

P1 = Connector 3421-3000

3M Company

Fig. 3a - Schematic and logic diagram for Microterminal CDP18S021. (Cont'd. from Page 10.)

9205-28802

Fig. 3b - Microterminal assembly drawing.

SEGMENT CODE Segment Bit Hexadecimal 1101 1111 DF Ъ 1111 1101 FD0111 1111 **7**F С **F7** 1111 0111 d 1110 1111 EF f 1111 FΕ 1110 1111 1011 FBg h (point) BF1011 1111 , h

		DIGIT CO	DE
Digit	· <u>-</u>	Bit	Hexadecimal
1	1000	0000	80
2	0100	0000	40
3	0010	0000	20
4	0001	0000	10
5	0000	1000	08
6	0000	0100	04
7	0000	0010	02
8	0000	0001	01

Fig. 4 - Segment and digit codes for seven-segment LED display.

System Software

The Microterminal interface is controlled by routines in its associated ROM. These routines handle keyboard scan, key debounce and decode, display code conversion and multiplexing, standard modes of terminal operation, and display function subroutines addressable by a user program.

Microterminal Operating Modes

There are three basic operations that can be performed with the Microterminal: memory read, memory write, and CPU register readout. These operations are discussed below.

Memory Read

When the Microterminal is in the Address Entry mode, the contents of memory at the location shown in the address field are displayed as a two-digit hexadecimal byte in the data field. When RU is pressed, the terminal starts in the Address Entry mode, as denoted by lighted decimal points in the address field. The user then may enter the desired address by pressing the appropriate hexadecimal keys. Numbers are shifted in from right to left. (If the terminal is already in the Data Entry mode, it is first necessary to press the \leftrightarrow button to change modes.)

Example 1: Read memory location 801F.

First, make sure the CONT/STEP switch is in the CONT (leftmost) position. Then,

Enter	Press	Display		Comment		
8 0 1	R RU	0.0.0.8. 0.0.8.0 0.8.0.1	$\begin{array}{c} x & x \\ x & x \end{array}$	Enter desired address, 801F		
${f F}$		8.0.1.F.	3 2	Contents of 801F now displayed		
To read	contiguous	addresses, p	ress	the INC button:		
	INC	8,0.2,0.	8 0	Contents of 8020 is 80.		
	INC etc.	8.0.2.1.	A 6	Contents of 8021 is A6.		

^{*}X denotes a don't care or intermediate display.

Memory Write

When the Microterminal is in the Data Entry mode, the byte in the data field is written to the address location indicated when the INC button is pushed. Moreover, the address is incremented by 1 and the next byte displayed in the data field. The Data Entry mode is signified by lighted decimal points in the data field. Hexadecimal numbers are entered in the data field from right to left. If the terminal is in the Address Entry mode, it is necessary to press the \leftrightarrow button to change modes.

Example 2: Change the data byte at location 20 to a 11. Assume initial arbitrary state with UT5 already running.

First, make sure the ${\tt CONT/STEP}$ switch is in the CONT position. Then,

Enter	Press	<u>Display</u>	Comment
		X X X X X.X.	Arbitrary initial conditions.
	CA	0 0 0 0 X.X.	Clear address.
	\leftrightarrow	$0.0.0.0 \times X$	Go to Address Entry mode.
2		0.0.0.2. X X	Begin Address Entry.
0		0.0.2.0. X X	Address established.
	\longleftrightarrow	0 0 2 0 X,X.	Go to Data Entry Mode.
1		0 0 2 0 X.1.	Begin Data Entry.
1		0 0 2 0 1.1.	Data established, but not written.
	INC	0 0 2 1 X.X.	Data has now been written to
			memory. The content of memory
			location 21 is then displayed
			in data field.

Example 3: Write an F6 into the next location (21).

Enter	Press	Display	Comment
		0 0 2 1	X.X. End of Example 2.
F		0 0 2 1	<pre>X.X. End of Example 2. X.F. F.6.</pre> Enter the data byte.
6		0 0 2 1	F.6.
	INC	0022	X.X. Write the data byte.

To skip a location without altering its contents, either press INC or switch to the memory address mode and go to the desired location.

Starting a User Program

A user program can be started in one of two ways. After R has been pressed, pressing the RP button will cause execution to start from memory location 0000 with P = X = 0. These steps will, of course, stop the Utility Program and cause the display to turn off. To recall the Utility program, the user should press R followed by RU.

To start from any location, the user should enter the starting address via the Address Entry mode and then press \$P. In this case, R should not be pressed before \$P because UT5 must be running for the \$P command to be recognized.

CPU Register Readout

Registers Rl through RF of the CPU can be read out at the point where a user program is halted, as described below. When this feature is used with a "planted" IDLE instruction, it provides the means for implementing an elementary breakpoint for debugging purposes. This discussion assumes the Microterminal is being used with an Evaluation Kit system (CDP18SO2O).

Assume a breakpoint is required at location XXXX of the user program and at that point CPU registers and certain memory locations are to be examined. First, the user should write an idle instruction (op code 00) into location XXXX before starting the program. The user program will idle when it reaches that location. The user should start his program with RP or \$P and when it idles do the following (program execution stops at the idle instruction):

- 1. Press R to reset the system.
- 2. Put the CONT/STEP switch in the STEP position.
- 3. Press RU four times. The CPU is now in the SO state as indicated by both SCO and SCl state code LED's being off (on the Evaluation Kit) and the memory address lines=0002. The address lines indicate the number of the next register to be displayed.
- 4. Press RU once more. The contents of R2 are now displayed in the address lines LED's of the Evaluation Kit.
- 5. Press RU once more. The CPU is again in the SO state as indicated by SCO and SC1=0. The address lines=0003.
- 6. Press RU once more and the contents of R3 will be displayed. Continue pressing RU in the same sequence to display each subsequent register. After RF, the final register displayed is R1. Register RO is not displayed.

Memory locations at the breakpoint can be examined by pressing R, switching to the CONT mode, pressing RU, and examining the memory contents as previously described.

Single-Step Operation

When the Microterminal is used with the Evaluation Kit, the single-step option can be used with the RU button to provide a readout of CPU registers as discussed previously. The RP button and the single-step control allow stepping through a user program and observing system operation on the LED's of the Evaluation Kit. For details of single-step operation, the reader should refer to the Evaluation Kit Manual for the RCA CDP1802 COSMAC Microprocessor, MPM-203, Section II, Design and Operation, subsection 3, CONTROL (page 2-5).

The Microterminal Utility Program UT5 contains two main sections: a routine called KEYUT which takes care of terminal interfacing and a group of user-oriented subroutines. These programs are discussed next. The names of these subroutines and their absolute addresses are given below:

Subroutine	Address
KEYUT	8000
ENTRY	8108
REGDIS	81A6
LEDD	816C
COUNT	814F
CALL	81E4
RETURN	81F4

KEYUT

In the servicing of Microterminal operations, KEYUT performs two main tasks:

- 1. Refreshes the display periodically by sending out both segment and digit signals to the two output ports, and
- 2. Periodically scans for keyboard inputs and executes the required actions.

Fig. 5 shows a flowchart of KEYUT operations. The first few instructions in KEYUT are data fetches via registers R2, R3, . . . RF, R1. These instructions perform no useful function in the Continuous mode of operation. However, they do cause the contents of registers R1 through RF to appear on the memory address bus generating the CPU register readout function.

KEYUT spends most of its time in a loop of refreshing the display and waiting for a key depression. When a key is pressed, the program decodes it and performs the required action. KEYUT waits for the key to be released (refreshing the display in the meantime) before returning to the main loop. KEYUT is wholly a part of the Utility program. It cannot be called by user programs.

ENTRY

As a convenience to the user, the ENTRY subroutine at location 8108 initializes the CPU registers necessary for the COSMAC Standard Call and Return Technique. This technique allows multiple levels of subroutine nesting by use of a stack in RAM. The Call and Return subroutines are included on the ROM (UT5). The reader should refer to the section on Programming Techniques in the User Manual for the RCA CDP1802 COSMAC Microprocessor, MPM-201A, for a detailed description of this technique for general subroutining.

After the ENTRY routine is called via a long branch instruction, control is returned to the user program at location 0005 with

P = 3

X = 2

R2 = 8C1F (top of stack)

R4 = 81E4 (standard CALL routine)

R5 = 81F4 (standard RETURN routine)

0)

Fig. 5 - Flowchart for Microterminal utility program KEYUT.

Thus, a long branch to ENTRY (op code CO8108) as the first three bytes of a user program saves writing the initialization code otherwise required to establish the Standard Call and Return Technique. The program returns control to memory location 0005. Examples 4 and 5 below show how ENTRY can be used for subroutine calls.

()

COUNT

The COUNT subroutine at location 814F is an independent program that displays memory sequentially starting from location 0000, incrementing the address approximately once per second. This program provides an automatic read-back of a user program previously entered. To run this program, a user would set the Microterminal address to 814F and press the \$P key.

Readout Subroutines - REGDIS and LEDD

Two subroutines are provided to output data to the display via a user program. The subroutine REGDIS at location 81A6 sends the contents of registers RA and RB to the display. Each register is displayed as a four-digit hexadecimal number. RA appears at the left of the display. REGDIS uses the standard call and return technique. To call REGDIS, the following code is used: D481A6. REGDIS should be called frequently to obtain maximum LED brightness.

The other subroutine, called LEDD and located at 816C, is more general purpose. It allows user control of all eight-digits of display, plus their decimal points. LEDD reads out eight consecutive bytes of memory, starting at the location pointed to by RF, interpreting the bits at each location as a control and data character as follows:

LEDD thus allows displays of all eight digits. Unused display positions are specified as blanks in the appropriate memory positions. LEDD leaves the data pointer RF at its initial value when it exits.

Examples of Use of UT5 Subroutines

Example 4: Display registers RA and RB. Increment RA.

Enter	Press R	Display	Comment
	RU	0.0.0.0 X X	Start UT5.
	\longleftrightarrow	0 0 0 0 X.X.	Go to Data Entry mode.
CO		0 0 0 0 C.O.	Enter C then O to
	INC	0 0 0 1 X.X.	set up a long branch to ENTRY.

Enter	Press	<u>Display</u>	Comment
81		0 0 0 1 8.1.	
	INC	0 0 0 2 X.X.	
08		0 0 0 2 0.8.	
	INC	0 0 0 3 X.X.	Skip to location 0005
	INC	0 0 0 4 X.X.	the return point
	INC	0 0 0 5 X.X.	from ENTRY.
04		0 0 0 5 D.4.	Call to REGDIS.
	INC	0006 X.X.	
81		0 0 0 6 8.1.	
	INC	0 0 0 7 X.X.	
A6		0 0 0 7 A.6.	
	INC	0 0 0 8 X.X.	
1A		0 0 0 8 1.A.	Increment RA.
	INC	0 0 0 9 X.X.	
30		0 0 0 9 3.0.	Loop back to 0005.
	INC	0 0 0 A X.X.	
05		0 0 0 A 0.5.	
	INC	000в х.х.	Program is now loaded. To
			start it running press
	R	500 TT 475	
	RP .	\	
		\	
		RA RB	

Example 5: Display the number 3.14.

Enter	Press	Display	Comment
	R		
	RU	0.0.0.0 X X	Start UT5.
		0 0 0 0 X.X.	Go to data entry mode.
CO		0 0 0 0 C.O.	Set up long
	INC	0 0 0 1 X.X.	
81		0 0 0 1 8.1.	branch to ENTRY.
	INC	0 0 0 2 X.X.	
08		0 0 0 2 0.8.	
	INC	0 0 0 3 X.X.	Skip to location 0005.
	INC	0 0 0 4 X.X.	
	INC	0 0 0 5 X.X.	
F8		0 0 0 5 F.8.	Point RF to 0020, the display area.
	INC	0 0 0 6 X.X.	
00		0 0 0 6 0.0.	
	INC	0 0 0 7 X.X.	
\mathtt{BF}		0 0 0 7 B.F.	
	INC	0 0 0 8 X.X.	÷
F8		0 0 0 8 F.8.	
	INC	0 0 0 9 X.X.	
20		0 0 0 9 2.0.	
	INC	0 0 0 A X.X.	
\mathbf{AF}		0 0 0 A A.F.	
	INC	0 0 0 B X.X.	

Enter	Press	Display	Comment
D4		0 0 0 в р.4.	Call LEDD.
0.1	INC	0 0 0 C X.X.	
81	INC	0 0 0 C 8.1. 0 0 0 D X.X.	
6C	22.0	0 0 0 D 6.C.	
	INC	0 0 0 E X.X.	
30	TNC	0 0 0 E 3.0. 0 0 0 F X.X.	Branch back to call
0в	INC	0 0 0 F A.A.	LEDD.
	INC	0 0 1 0 X.X.	
Abov	e is the	e main program. N	Next, set up the digits to be
displayed	starti	ng from location (0020 (where RF is pointing).
	CA	0 0 0 0 X.X.	
	\leftrightarrow	0.0.0.0 X X	Go to address entry mode.
20		0.0.2.0. X X	Set address to 20.
	\leftrightarrow	0 0 2 0 X.X.	Go to data entry mode.
80		0 0 2 0 8.0.	First 5 digits
	INC	0 0 2 1 X.X.	
80		0 0 2 1 8.0.	are blanked.
	INC	0 0 2 2 X.X.	
80		0 0 2 2 8.0.	
	INC	0 0 2 3 X.X.	
80		0 0 2 3 8.0.	
	INC	0 0 2 4 X.X.	
80		0 0 2 4 8.0.	
	INC	0 0 2 5 X.X.	
13		0 0 2 5 1.3.	Display 3. when program is run
	INC	0 0 2 6 X.X.	
01		0 0 2 6 0.1.	Display 1
	INC	0 0 2 7 X.X.	
04		0 0 2 7 0.4.	Display 4
	INC	0 0 2 8 X.X.	
The progra	am is n	ow loaded. To sta	art it, press
	R		
	ממ	3 14	

RP 3.14

Appendix A -

Instructions for Installing the CDP18S021 Microterminal in the CDP18S020 Evaluation Kit

The CDP18S021 Microterminal and the CDP18S020 Evaluation Kit have been designed to interface with each other. As a result, installation is straightforward and requires only a minimum amount of time. To assist in this installation, a step-by-step procedure is given below. It is recommended that the entire procedure be reviewed before the installation is begun.

Procedure

- 1. Unpack the shipping container for the CDP18SO21 Microterminal. The items provided are:
 - a. CDP18S021 Microterminal unit
 - b. Mating connector
 - c. Utility ROM CDPR522 (a CDP1832D ROM mask-programmed with Utility program UT5) NOTE: The CDPR522 ROM should not be removed from its shipping carrier until called for by the instructions.
- 2. Mount and solder the Microterminal mating connector at J1 on the solder side of the Evaluation Kit PC card. J1 is located next to the User I/O Connector P3. Fig. A-1 gives the assembly detail. The pin assignments for connector J1, the keyboard connector, are given in Fig. A-2.
- 3. The Microterminal includes control keys which duplicate the RESET (S2), RUN (S3), RUN P (S4), and CONT/STEP (S5) controls on the Evaluation Kit. In order to use the RUN U and RUN P Microterminal controls at a V_{CC} greater than 5 volts without damage to Ull, it is necessary to remove the corresponding switches (S3 and S4) on the Evaluation Kit. Several alternatives are possible and are listed below. One of these alternatives must be selected and completed during this step if it is intended to operate the Evaluation Kit at a V_{CC} above 5 volts. Only S3 and S4 need to be removed; the other switches are redundant. The alternatives are:
 - a. Remove switch S3 (RUN U) and switch S4 (RUN P) from the Evaluation Kit PC card and discard them. See Fig. A-1. Or,
 - b. Disable the RUN U and RUN P functions from the Microterminal by removing wires at pins 1 and 3 from connector J1. See Fig. A-1. Or,

- Modification of Evaluation Kit PC card for use with RCA COSMAC Microtermir CDP185021.

- Remove switch S3 (RUN U) and switch S4 (RUN P) from the Evaluation Kit PC card and relocate them in positions next to the User I/O connector P3. Jumpers can be inserted between the alternate locations and the original switch positions in order to regain PC card control of the RUN U and RUN P functions. See Fig. A-1.
- 4. Remove the CDPR512 Utility ROM (CDP1832 UT4, 24 pins) from the U2 socket location on the Evaluation Kit PC card. Replace it with the CDPR522 Utility ROM (CDP1832 - UT5) supplied with the Microterminal. Carefully observe the pin 1 orientation as indicated in Fig. A-1. Insert the Jl mating connector attached to the end of the ribbon cable coming from the back of the Microterminal into the Jl connector just mounted on the Evaluation Kit PC card. Make sure that the pin 1's, marked by Δ , of both connectors line up.
- 6. If Link 4B has been installed on the PC card, it must be removed. This link connects the Service Request from the input port U5 to the $\overline{EF3}$ line. Because the Microterminal will be using $\overline{EF3}$, this link plus any user-added connections to that flag line should also be removed. The input port can be connected to another flag line or Link 4A can be installed to connect the Service Request to the INTERRUPT input. For additional information on these connections, refer to the Evaluation Kit Manual, Section II - Design and Operation, Subsection 6 - Input/ Output.

		BUS 5 16							
19	17	$\frac{15}{\text{MRD}}$	13	11	9	7	5	3	1
GND	TPB		I/03	1/04	EF3	V _{CC}	V _{LED}	RUN P	RUN U

Fig. A-2 - Pin assignments for keyboard connector Jl.

Appendix B -

Utility Program UT5 Listing

```
! M
0000 ;
                      0.004
0000 ;
                      0002
0000 ;
                      0003
                                    ORG #8000
8000 7100;
                      0004 KEYUT:
                                    •≎7100 ...DISABLE INTERRUPT
8002 02030405060708;0005
                                    LDN 2;LDN 3;LDN 4;LDN 5;LDN 6;LDN 7;LDN 8
8009 090A0B0C0D0E0F;0006
                                    LDN 9;LDN A;LDN B;LDN C;LDN D;LDN E;LDN F
2010 01;
                      0007
                                    LDM 1
8011 F880B3;
                      0008
                                    LDI
                                             A.1(OPTION);PHI 3 ...INIT
                                            A.O(OPTION) ;PLO 3 ...SETUP P
8014 F8FEA3;
                      0009
                                    LITIT
8017 C0810E;
                      0010
                                    LBR INIT...INITIALIZE AND GO
801A ;
                      0011
801A ;
                      0012
801A ;
                      0013
                                    ...SUBROUTINE LED
801A ;
                                    ...DISPLAYS 9 DIGITS IN DISPLAY
                      0014
801A ;
                      0015
                                    ... OF SEVEN SEGMENTS
801A ;
                      0016
801A ;
                                    ...USES R7,RD,RB
                      0017
801A ;
                      0018
                                    . . .
801A
                      0019
                                    . . .
801A ;
                      0020
                                    . . .
801A ;
                      0.021
                                            A.0(DIGITS);PLO 7 ..TO DISPLAY
801A F800A7;
                      0022 LED:
                                    LDI
                                    GHI 4;PHI D ...POINT TO TRANSLATION TAB
801D 94BD;
                      0023
801F F880AB;
                      0024
                                            #80;PLO B ...START DISPLAY
                                    LDI
8022 E2;
                      0025
                                    SEX 2 ...USE R2 AS AUX
8023 2222;
                                    DEC 2:DEC 2 ...GET READY FOR DUTPUTS
GLO B:STR 2 ...PUT IN DIGIT NO.
                      0026 LOOP1:
8025 8B52;
                      0027
                                   LDA 7;ANI #0F;ADI A.0(DTAB);PLO D..POINT TO
8027 47FA0FFC36AD;
                      0028
802D 4DBB;
                      0029
                                    LDA D; PHI B ... FETCH DISPLAY DIGIT
802F 64;
                      0030
                                    OUT 4 ...PUT OUT DIGIT
8030 8CFA01;
                                   GLD C:ANI #01 ...GET MODE
                      0031
8033 323F;
                      0032
                                    BZ DISD ...DATA MODE
8035 8BFA0F;
                                    GLO B;ANI #OF ...1ST DIGIT?
                      0033
8038 3A44;
                      0034
                                   BNZ OUTD ...PROCEED IF NOT
                                    GHI B;AMI #BF ...ELSE SHOW DOT
803A 9BFABF;
                      0035 LDOT:
803D 3045;
                                    BR OUTD+1 ...PROCEED
                      0036
                                   GLO BIANI OFC ... 7TH DIGIT?
803F 8BFAFC;
                      0037 BISD:
8042 323A;
                      0038
                                    BZ LDOT ...SHOW IT IF SO
8044 9852;
                                    GHI B;STR 2 ... & SEGMENT DISPLAY
                      0039 OUTD:
8046 63;
                      0040
                                   DUT 3 ... SEGMENT MUX
                      0041 DELAY:
                                    SEP 4;,A(DELSUB) ...DELAY
8047 D48147;
804P E3;
                      0042
                                    SEX 3 ...PC=AUX
                                   OUT 3;,⇔FF ...TURN OFF SEGMENT
804B 63FF;
                      0043
804D E2;
                      0044
                                    SEX 2 ...R2=AUX
804E 87FF06;
                      0045 CHEND:
                                   GLO 7;SMI A.O(DIGITS+6) ...DONE?
8051 3B54;
                      004€
                                   BMF CD ...COMTINUE
8053 D5;
                      0047
                                    SEP 5 ...EXIT
8054 8BF6AB;
                      0048 CD:
                                   GLO B;SHR;PLO B ...SHIFT
8057 FAF3;
                      0049
                                   ANI #F3 ...2 BLANK DIGITS?
8059 3A23;
                      0050
                                   BMZ LOOP1 ...NO, KEEP GOING!
```



```
BR CHEND ... SEE IF DONE
805B 304E;
                     0051
805D :
                     0052
                                  . . .
805D ;
                     0053
                                   ...HKEY SUBROUTINE
805D ;
                     0054
                                   ...READS 1 HEX DIGIT FROM KEYBOARD
805D 👯
                     0055
                                   ...AND STORES IN RA.O
                     0056
805D ;
                     0057
805D 👯
                                  SEP 4; A(LED) ...SCAN & REFRESH
805D D4801A;
                     0058 HKEY1:
                                  B3 HKEY1 ...ELSE SCAN
                     0059
8060 365D;
                                  SEP 4;;A(LED) ...SCAN & REFRESH
GLD C;ANI #01 ...MODE=ADDRS?
8062 D4801A;
                     0060 HKEY2:
8065 80FA01;
                     0061
8068 326D;
                     0062
                                   BZ HKEYSB ...NO,SKIP
                                   SEP 4; A (UPDRE0) ... UPDATE RE.0
806A D480D3;
                     0063
806D 3E62;
                     0064 HKEY2B: BM3 HKEY2 ... & SCAN
806F D4801A;
                     0065
                                   SEP 4;,A(LED) ...DELAY THRU BOUNCE
                                   GHI 4; PHI A ... POINT RA
8072 94BA;
                     0066
8074 F822AA;
                     0067
                                  LDI A.O(KTAB);PLO A ...TO TAB
                                   INP 4 ...READ BYTE
8077 60;
                     0068
                                  LDA A ...FETCH FROM TABLE
8078 4A;
                     0069 FC⊡M:
                                  MOR ...MATCH WITH IMPUT
8079 F3;
                     0070
807A 3283;
                     0071
                                   BZ FMAT ...FOUND
807C 8AFF36;
                     0072
                                   GLD A;SMI A.O(KTAB+#14) ...ELSE, END?
                                  BDF HKEY1 ...YES, ERR, DO DVER
807F 335D;
                     0073
8081 3078;
                     0074
                                   BR FCOM ...CONTINUE SCAN
                     0075 FMAT:
                                  GLD A;SMI A.O(KTAB+1);PLD A ...COMPUTE DISP
8083 8AFF23AA;
8087 FAF0;
                                  ANI ⇔F0 ...>10?
                     0076
                                   BMZ SPBRM ...YES, DO BRANCHES
8089 3A90;
                     0077
                                   SEP 4; A (SHIFTD) ...PUT IN DIGIT
                     0078
808B B4809E;
                                   BR HKEY1 ...BACK
808E 305D;
                     0079
                     0080 SPBRM:
                                   GLO A; ANI #0F; ADÍ A.O(BTAB); PLO A.. POINT TO
8090 SAFAOFFC9AAA;
                                   GHI 3; PHI A ... SETUP UPPER HALF
8096 93BA;
                     0081
                                   LDP A;PLD 3 ...POINT TO ROUTINE ENTRY
8098 4AA3;
                     0082
809A ;
                     0083
809A ;
                     0084
                                   . . .
809A ;
                     0085
809A FA;
                     0086 BIAB:
                                   ,A.O(XCHM) ...EXCHANGE DATA & ADDR MODE
                                   •A.0(DDLP) ...$P
809B F0;
                     0087
                                   .A.0(INC) ...INCREMENT ADDRS
8090 F6;
                     0088
809B FE;
                     0089
                                   ,A.O(OPTION) ...EXTRA
809E ;
                     0090
809E ;
                     0091
                                   ...SHIFT SUBROUTINE
                     0092
809E ;
809E ;
                                   ... ONE PLACE RIGHT AND PUT
                     0093
                                   ... UPDATES BUF & REG
809E
                     0094
                                   ...IN NEW DIGIT FROM RA.O
                     0095
809E ;
809E ;
                     0096
809E ;
                     0097
809E 8CFA01;
                     0098 SHIFTD: GLO C;AMI #01 ...MODE=ADDRS?
80A1 32E5;
                     0099
                                   BZ DAS ...NO
                                   GHI F;SHL;SHL;SHL;SHL;STR 2
80A3 9FFEFEFEFE52;
                     0100 ADS:
80A9 8FF6F6F6F6;
                     0101
                                   GLO FISHRISHRISHRISHR
80AE F1BF;
                                   DRIPHI F ...COMPOSE RF.1
                     0102
                                   GLO FISHLISHLISHLISTR 2
80B0 8FFEFEFEFE52;
                     0103
                                   GLO A; DR; PLO F ... COMPOSE RF. 0
80B6 8AF1AF;
                     0104
                                   LDI A.0(DIGITS);PLO 7 ...POINT TO BUF
                     0105 UPDRF:
80B9 F800A7;
80BC 9FF6F6F6F657;
                     0106
                                   GHI F;SHR;SHR;SHR;SHR;STR 7 ...1ST DIGIT
                                   INC 7 ...BUMP
8002 17;
                     0107
8003 9FFA0F57;
                     0108
                                   GHI F;ANI #OF;STR 7 ...2ND DIGIT
                     0109
                                   INC 7 ...BUMP
8007 175
                                   GLD F;SHR;SHR;SHR;SHR;STR 7 ...3RD DIGIT
8008 8FF6F6F6F657;
                     0110
80CE 17;
                     0111
                                   INC 7 ...BUMP
80CF 8FFA0F57;
                     0112
                                   GLO F;ANI #0F;STR 7 ...4TH DIGIT
80D3 4FAE;
                     0113 UPDRE0: LDA F;PLD E ...FETCH BYTE FROM MEMORY
80D5 2F;
                     0114
                                   DEC F ...FIX RF
80D6 F804A7;
                     0115 UPDBY:
                                   LDI A.O(DIGITS+4);PLO 7 ...POINT TO BUF
80D9 8EF6F6F6F657; 0116
                                   GLO E;SHR;SHR;SHR;SHR;STR 7 ...1ST TO BUF
```

```
80DF 17;
                     0117
                                   INC 7 ...BUMP R7
80E0 8EFA0F57;
                                   GLO E;ANI #OF;STR 7 ... 2ND DIGIT TO BUF
                     0118
                                   SEP 5 ...RETURN
80E4 D5;
                     0119
80E5 8E;
                     0120 DAS:
                                   GLO E ...GET DIGIT
                                   SHL;SHL;SHL;STR 2
80E6 FEFEFEFE52;
                     0121
80EB 8AF1AE;
                     0122
                                   GLO AFORFPLO E ...COMPOSE NEW BYTE
80EE 30D6;
                     0123
                                   BR UPDBY ...% UPDATE DISPLAY
80F0 ;
                     0124
                                   . . .
80F0 ;
                     0125
                                   . . .
80F0 ;
                     0126
                                   ...SPECIAL BRANCH FOR
80F0 ;
                     0127
80F0 ;
                                   ...EXTRA FUNCTIONS
                     0128
80F0 ;
                     0129
                                   . . .
80F0 ;
                     0130
80F0 9FB0;
                     0131 DOLP:
                                   GHI F;PHI 0 ...SETUP RO
                                   GLO FIPLO 0 ...FOR PC
80F2 8FA0;
                     0132
80F4 E0;
                     0133
                                   SEX 0
80F5 D0%
                     0134
                                   SEP 0
                     0135 INC:
80F6 8E5F1F;
                                   GLO ERSTR FRINC F ... WRITE & BUMP
80F9 38;
                     0136
                                   *#38 ...SKIP A BYTE
                                   INC C ...FLIP MODE
80FA 10;
                     0137 XCHN:
80FB 008102;
                                   LBR CUP
                     0138
                     0139 OPTION: LDI #00;PHI F;PLO F ...CLEAR RF
80FE F800BFAF;
                                   SEP 4;,A(UPDRF) ...REFRESH
8102 D480B9;
                     0140 CUP:
8105 C0805D;
                     0141
                                   LBR HKEY! ... % SCAN KEYS
8108 ;
                     0142
8108 ;
                     0143
                                   . . .
8108 ;
                     0144
8108 ;
                     0145
                                   ... ENTRY POINT FOR STARTING
8108 ;
                     0146
                                   ...PRDGRAM AT LOC 3 WITH P=3
8108 ;
                     0147
                                   ...R2 = STACK POINTER = #801F
                                   ...R4 = CALL SUBROUTINE POINTER
8108 ;
                     0148
8108 ;
                     0149
                                   ...R5 = RETURN SUBROUTINE POINTER
                     0150
8108 ;
                                   . . .
8108 ;
                     0151
                     0152 ENTRY: LDI #00;PHI 3
8108 F800B3;
810B F805A3;
                     0153
                                   LDI #05;PLD 3 ...STARTS AT 0005
810E F881B4B5;
                     0154 INIT:
                                   LDI A.1(CALL); PHI 4; PHI 5 ... SUBROUTINE
                                   LDI A.0(CALL);PLO 4 ...CALL
                     0155
8112 F8E4A4;
                                   LDI A.O(RETPGM);PLO 5 ...& RETURN
                     0156
8115 F8F4A5;
8118 F88CB2B7;
                     0157
                                   LDI #80;PHI 2;PHI 7 ...SETUP
                                   LDI #1F;PLO 2 ...POINTER TO STACK
811C F81FA2;
                     0158
811F AC;
                     0159
                                   PLD C ...MODE = ADDRS
8120 E2;
                                   SEX 2 ...R2=AUX
                     0160
8121 D3;
                                   SEP 3 ...60
                     0161
8122 ;
                     0162
                                   . . .
8122 ;
                     0163
8122 0A8E80814E4041;0164 KTAB:
                                   *#0A8E80814E40412E20211E10110608040209010C
8129 2E20211E101106;0164
8130 080402090100;
                    0164
8136 447DC151785242;0165 DTAB:
                                   >#447DC1517852425D40504862C661C2CAFF
813D 5D405048620661;0165
8144 C2CAFF;
                     0165
8147 ;
                     0166
8147 ;
                                   ...DELAY SUBROUTINE
                     0167
8147 ;
                     0168
                                   ...DELAYS FOR A FIXED TIME
8147 ;
                     0169
                                   . . .
8147 ;
                     0170
                                   . . .
8147 F820AD;
                     0171 DELSUB: LDI #20;PLD D
814A 2D;
                     0172 DL:
                                   DEC D ...COUNT
814B 8D;
                     0173
                                   GLO D ...DONE?
814C 3A4A;
                                   BNZ DL ...ND, KEEP GDING
SEP 5 ...RETURN
                     0174
814E D5;
                     0175
814F ;
                     0176
                                   . . .
```

```
814F ;
                     0177
                                  . . .
                     0178
814F ;
                                  ... COUNTER PROGRAM
814F ;
                     0179
                                  ...TO COUNT UP & DISPLAY
814F ;
                     0180
                     0181
                                  ... THE COUNT IN LED DISPLAY
814F ;
                                  ... MEANT FOR EXERCISE ONLY
814F ;
                     0182
                    0183
814F 5
                                  . . .
814F ;
                    0184
                    0185 COUNT: LDI A.1(INCR);PHI 3 ...SETUP
814F F881B3;
                                  LDI A.O(INCR);PLO 3 ...PDINTERS
8152 F858A3;
                    0186
                                  LBR INIT ...FOR ROUTINE
8155 C0810E;
                    0187
                    0188 INCR:
                                  LDI #00;PHI F;PLB F ...ZERD RF
8158 F800BFAF;
8150 1F;
                    0189 INCRM: INC F ...ELSE BUMP RF
815D F880A8;
                    0190 DELAY1: LDI #80;PLD 8 ...SET DISPLAY TIME
                                  SEP 4;,A(UPDRF) ...UPDATE DISPLAY
8160 D480B9;
                    0191
                    0192 SHOW:
                                  SEP 4; A(LED) ...& LIGHT UP
8163 D4801A;
                                 DEC 8 ...DELAY
                    0193
8166 28;
8167 88;
                    0194
                                  6LD 8 ...TIME
                    0195
                                  BMZ SHOW ...KEEP LIGHTING UP
8168 3A63;
                    0196
                                  BR INCRM ...ADD 1
816A 305C;
8160 :
                    0197
                                  . . .
8160 3
                     0198
8160 ;
                                  ...LEDD SUBROUTINE
                     0199
                                  ...REFRESH DISPLAY
8160 ;
                     0200
                                  ...AT BUFFER M(R(F)) FOR 8 BYTES
8160 ;
                     0201
                                  ...USES RD,RE,RF
8160 ;
                     0202
8160 %
                     0203
                                  . . .
8160
                     0204.
                                  ...BIT 7 = 1 = BLANK
8160 ;
                                  ...BIT 4 = 1 = POINT
                     0205
                                  ...BITS 0 \rightarrow 3 = HEX DIGIT
8160 %
                     0206
8160 ;
                     0207
8160 ;
                     0208
                                  LDI #803PLD E ...START WITH LEFTMOST DIGIT
816C F880AE;
                    0209 LEDD:
                                  LDI A.1(DTAB); PHI D ... SEGMENT TABLE POINTER
816F F881BD;
                     0210
                     0211 LOOPD: LDN F;ANI #80 ...TURN OFF?
8172 OFFA80;
8175 3A97;
                                  BMZ SKIPD ...YES, SKIP DIGIT
                    0212
8177 2222;
                                  DEC 23DEC 2 ...GET 2 FREE RAM BYTES
                     0213
8179 8E52;
                     0214
                                  GLO EXSTR 2 ... READY FOR DIGIT OUT
817B 0FFA0FFC36AD; 0215
                                  LDN F;ANI #OF;ADI A.O(DTAB);PLD D ..TAB
8181 4DBE;
                     0216
                                  LDA DIPHI E ...FETCH SEGMENTS
                                  LDN F;ANI #10 ...DECIMAL?
BZ DISPD ...NO, SHOW DIGIT ONLY
8183 OFFA10;
                     0217
8186 3280;
                     0218
                                  GHI E; ANI #BF; PHI E ... ELSE ADD POINT
8188 9EFABFBE;
                     0219
8180 64;
                     0220 DISPD: DUT 4 ...SELECT DIGIT
                                  GHI E;STR 2 ...PUT IN SEGMENTS
818D 9E52;
                     0221
                                  DUT 3 ...TURN ON
818F 63;
                     0222
                                  SEP 4; A (DELSUB) ...DELAY
8190 D48147;
                    0223
8193 E3;
                                  SEX 3 ...PC=AUX
                    0224
8194 63FF;
                    0225
                                  OUT 3; ##FF ... TURN OFF SEGMENT
                    0226 SEX 2 ...R2=AUX
0227 SKIPD: INC F ...BUMP POINTER
8196 E2;
                    0226
8197 1F;
8198 8EF6AE;
                                  GLO E;SHR;PLO E ...SHIFT
                     0228
                                  BMZ LOOPD ...CONTINUE
819B 3A72;
                     0229
819D 2F2F2F2F;
                                  DEC F;DEC F;DEC F ...ELSE
                     0230
                                  DEC F;DEC F;DEC F;DEC F ...FIX POINTER
81A1 2F2F2F2F;
                     0231
                                  SEP 5 ...AND RETURN
81A5 D5;
                     0232
                     0233
8186 j
                                  . . .
8186 ;
                     0234
81A6 ;
                     0235
                                  ...REGDIS SUBROUTINE
8186 ;
                     0236
8186 🦸
                     0237
                                   ...DISPLAYS HEX CONTENT OF RA AND RB
81A6 ;
                     0238
                                   ...IN LED DISPLAY
8186 j
                     0239
8186 ;
                    0240
                    0241 REGDIS: LDI A.1(DIGITS);PHI F ...SETUP
0242 LDI A.0(DIGITS);PLO F ...POINTER
8186 F88CBF;
81A9 F800AF;
81AC 9AF6F6F6F65F;
                                  GHI A;SHR;SHR;SHR;SHR;STR F ..DIGIT 1
                    0243
81B2 1F9AFA0F5F;
                                  INC F;GHI A;ANI ⇔OF;STR F
                     0244
                                                                     ..DIGIT 2
```

8200 ;

0312

END

```
INC FIGLD AISHRISHRISHRISHRISTR F..DIGIT 3
81B7 1F8AF6F6F6F65F;0245
81BE 1F8AFA0F5F; 0246
                                 INC F;GLD A;AMI #OF;STR F ..DIGIT 4
8103 1F9BF6F6F6F65F;0247
                                 INC F;6HI B;SHR;SHR;SHR;SHR;STR F..DIGIT 5
81CA 1F9BFA0F5F; 0248
                                 INC F;GHI B;ANI #OF;STR F
                                                                    ..DIGIT 6
810F 1F8BF6F6F6F65F;0249
                                 INC FiGLD BiSHRISHRISHRISHRISTR F..DIGIT 7
81D6 1F8BFA0F5F; 0250
                                 INC F;GLD B;ANI #OF;STR F
                                                                   ..DIGIT 8
81DB F800AF;
                                 LDI A.O(DIGITS); PLO F ... RESET POINTER
                    0251
81DE D4816C;
                    0252
                                  SEP 4; A(LEDD) ...REFRESH
                    0253
81E1 05;
                                  SEP 5 ...RETURN
81E2 👯
                    0254
                                  . . .
                    0255
81E2 ;
                                  . . .
81E2 ;
                    0256
                                 ...DUMMY SAVE AREA
                    0257
81E2 💰
81E2 ;
                    0258
                                 ...MAPPED INTO #8CXX
                    0259
81E2 ;
81E2 ;
                    0260
81E2 ;
                    0261
                                 PAGE
8200 ;
                    0262
                                 DIGITS=#8000
8200 ;
                    0263
                                  STACK=#801F
8200 ;
                    0264
                                  ...MOVE TO BOTTOM
                    0265
8200 ;
8200 ;
                    0266
8200 ;
                    0267
                                  ORG #81E3
81E3 ;
                    0268
                                 . . .
                    0269
81E3 👯
                                  . . .
81E3 ;
                    0270
                                  . . .
                                 ...CALL SUBROUTINE
81E3 ;
                    0271
81E3 ;
                    0272
                                 ... CALLS SUBROUTINES IN COSMAC
81E3 👯
                    0273
                                  ...USES R2,R3,R4,R5,R6
81E3 👯
                    0274
                                  ...AT EXIT X=2
                    0275
81E3 ;
                    0276 EXITA: SEP 3 ...BACK
81E3 D3;
                    0277 CALL: SEX 2 ...PDINT TO STACK
81E4 E2;
                                  GHI 6 ...SAVE R6
81E5 96;
                    0278
81E6 73;
                    0279
                                  STXD ...INTO STACK
81E7 86;
                    0280
                                 GLO 6 ...LOWER HALF
81E8 73;
                    0281
                                 STXD ...INTO STACK
81E9 93;
                                 6HI 3 ...PUT R3
                    0282
81EA B6;
                    0283
                                  PHI 6...INTO R6
                                 GLO 3 ...BOTH HALVES
81EB 83;
                    0284
81EC A6;
                    0285
                                 PLD 6
                                 LDA 6 ... & PUT SUBROUTINE ADDRESS
81ED 46;
                    0286
                                  PHI 3 ...INTO R3
81EE B3;
                    0287
                                 LDA 6
81EF 46;
                    0288
81F0 A3;
                    0289
                                  PLO 3
81F1 30E3;
                    0290
                                  BR EXITA ...GD TO SUBROUTINE
81F3 ;
                    0291
                                 . . .
81F3 ;
                    0292
                                 . . .
                    0293
81F3 👯
                                 . . .
                                 ...RETPGM SUBROUTINE
81F3 ;
                    0294
81F3 ;
                    0295
                                 ...RETURNŚ FROM SUBROUTINES IN COSMAC
81F3 👯
                    0296
                                  ...USES R2,R3,R4,R5
81F3 ;
                    0297
                    0298
                                  S=X TIXB TA...
81F3 ;
81F3 👯
                    0299
                    0300 EXITE: SEP 3 ...RETURN TO MAIN PROGRAM
81F3 D3;
                    0301 RETPGM: GHI 6 ...R6 -> R3
81F4 96;
81F5 13;
                    0302
                                  PHI 3 ...1ST HALF
                    0303
81F6 86;
                                  6LO 6
81F7 A3;
                                  PLD 3 ...2ND HALF
                    0304
                                  SEX 2 ...POINT TO STACK INC 2 ...RECOVER
81F8 E2;
                    0305
81F9 12;
                    0306
                                 LDXA ...R6
81FA 72;
                    0307
81FB A6;
                    0308
                                  PLO 6 ...LOWER HALF
                    0309
                                 LDX
81FC F0;
'81FD B6;
                    0310
                                 PHI 6 ... UPPER HALF
                                  BR EXITE ...BACK
81FE 30F3;
                    0311
```